Lund methanol day

SEBASTIAN VERHELST

unun

uuuuuuute

Sebastian Verhelst sebastian.verhelst@energy.lth.se

- PhD in hydrogen engines, 2005, Ghent University
- Currently 50% Assoc. Prof. at Lund University (SE) and 50% Assoc. Prof. at Ghent University (BE)
- Supervising 10 PhD students, 1 on hydrogen as engine fuel, 2 on dual fuel gas engines, 3 on biofuels, and 4 on methanol
- Expertise: internal combustion engines, focus on alternative/renewable fuels: methanol (since 2009), ethanol, hydrogen (since 1999), straight vegetable oils, animal fats, biodiesel, alcohol blends, ...
- Coordinator of EU H2020 project FASTWATER
- ... and your moderator for the day!

fuel, anol tive/renewable fuels: straight vegetable oils,

Setting the scene

DEFOSSILIZING, SECTORS JOINING FORCES

100 M barrels of oil per day

THE CHALLENGE

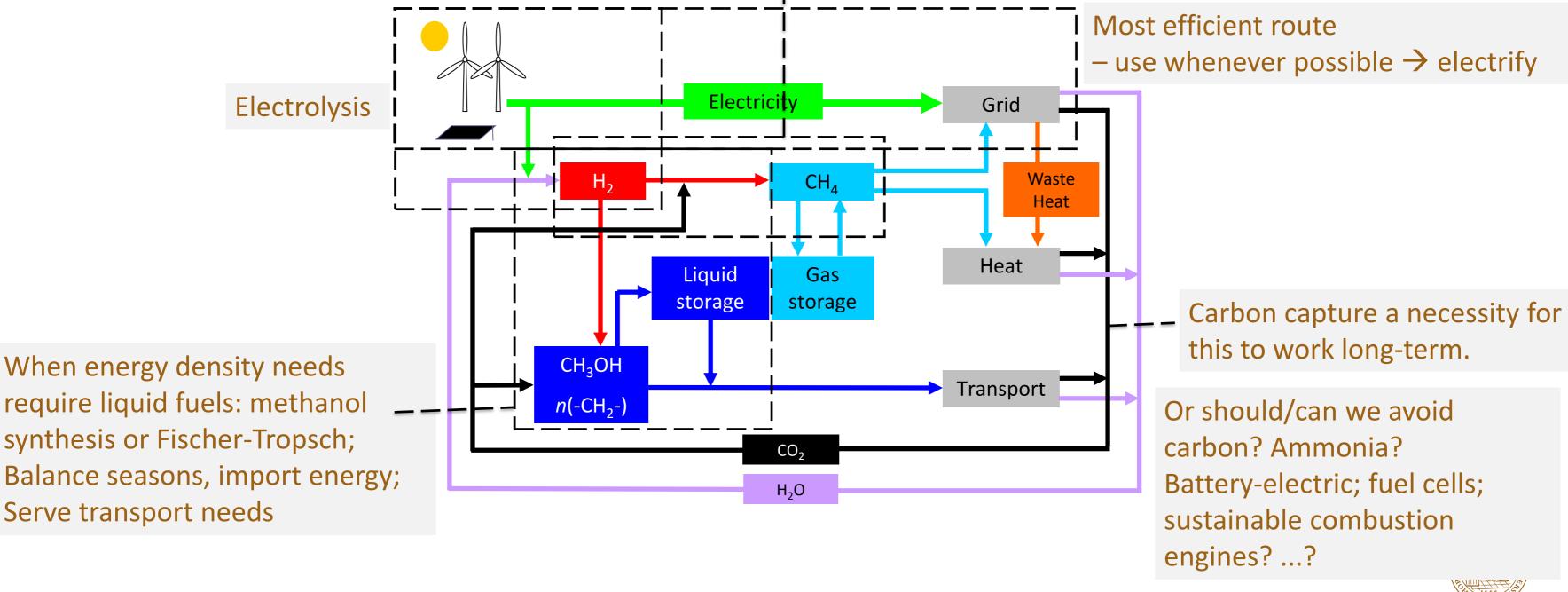
vs. chemicals production e.g. methanol production *capacity* of 3 M barrels /d

100 M barrels of oil per day

THE CHALLENGE

e.g. H₂ production 4.5 M barrels /d (energy equiv.)

A future sustainable (energy) society

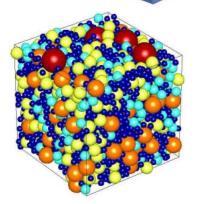

- Plenty of renewable energy: solar, wind, bio etc. can cover our needs
 - E.g. solar: 1,5 10^{12} barrels oil equivalent per day (15.000 x current oil use)
 - But gigantic challenge to scale them up
 - And renewables are intermittent and not equally distributed around the globe
 - Thus, need for large scale energy buffers, likely also energy imports
 - Most economic way to store and distribute large amounts of energy: fuels
 - » Fuels built from renewables either from bio, "down" into usable fuels;
 - » Or from green electricity "from the ground up", starting with hydrogen and synthesizing fuels from "green molecules"

Hydrogen to buffer renewables Balance electricity grid Methanation / e-gas: increase energy density Make use of existing gas grids

An integrated system

R. J. Pearson et al. "Energy storage via carbon-neutral fuels made from CO2, water, and renewable energy," Proc. IEEE, vol. 100, no. 2, pp. 440–460, Feb. 2012.

Narrowing down the options... Energy carrier and drive for (heavy) transportation?


Must be:

Sustainable

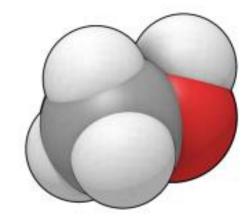
Closed cycle for energy carrier and powertrain materials

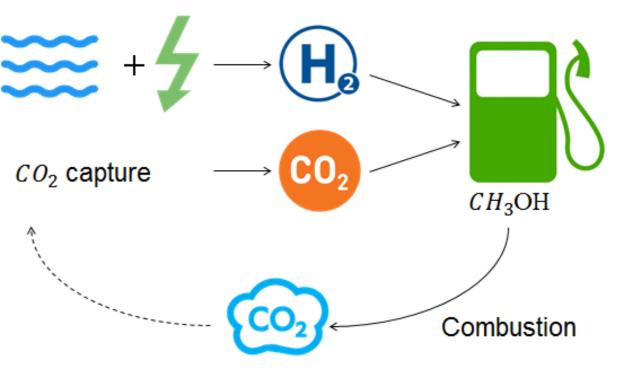
Scalable

- -Use abundantly available resources (avoid scarce materials)
- -Affordable

Storable

-High energy and power density... Makes life simple


 \rightarrow Need for renewable, liquid fuels



Case: methanol

- Can be produced in different ways
 - Biomass, fossil fuels
 - Synthesize using renewable energy: $H_2 + CO/CO_2 \rightarrow CH_3OH$
- Liquid
 - Most simple hydrogen carrier that is liquid at atmospheric conditions
 - » Simplicity desired: maximize production efficiency (well-to-tank)
 - Cheap tanks, cheap distribution
 - Evolution of infrastructure possible, retrofitting possible
 - Great fuel: high efficiency, ultralow emissions
 - » High efficiency desired: maximize conversion efficiency (tank-to-wheel/propellerLUND

Methanol gaining traction

- Power sector: liquid hydrogen carrier \rightarrow economically attractive versus alternatives, to store and distribute large amounts of energy
- Chemical sector: chemical building block, methanol-to-olefins (MTO)
- Transportation sector: liquid acceptable energy density for many applications
 - Shipping:

started looking into methanol when new pollutant emission regulations loomed

- > IMO Tier 3: looking for economically most feasible ways of cutting SO_x and NO_x
- » Gradually, search for alternatives widened in scope: how to cut CO_2 emissions from shipping too?
- Several initiatives investigating methanol as fuel for shipping now
 - BEST-energy; Green Maritime Methanol; Uthörn II; ...
 - FASTWATER...

Introducing FASTWATER

FAST TRACK TO CLEAN AND CARBON-NEUTRAL WATERBORNE TRANSPORT

Project description

FAST Track to Clean and Carbon-Neutral WATERborne Transport through Gradual Introduction of Methanol Fuel: **Developing and Demonstrating an Evolutionary Pathway** for Methanol Technology and Take-up

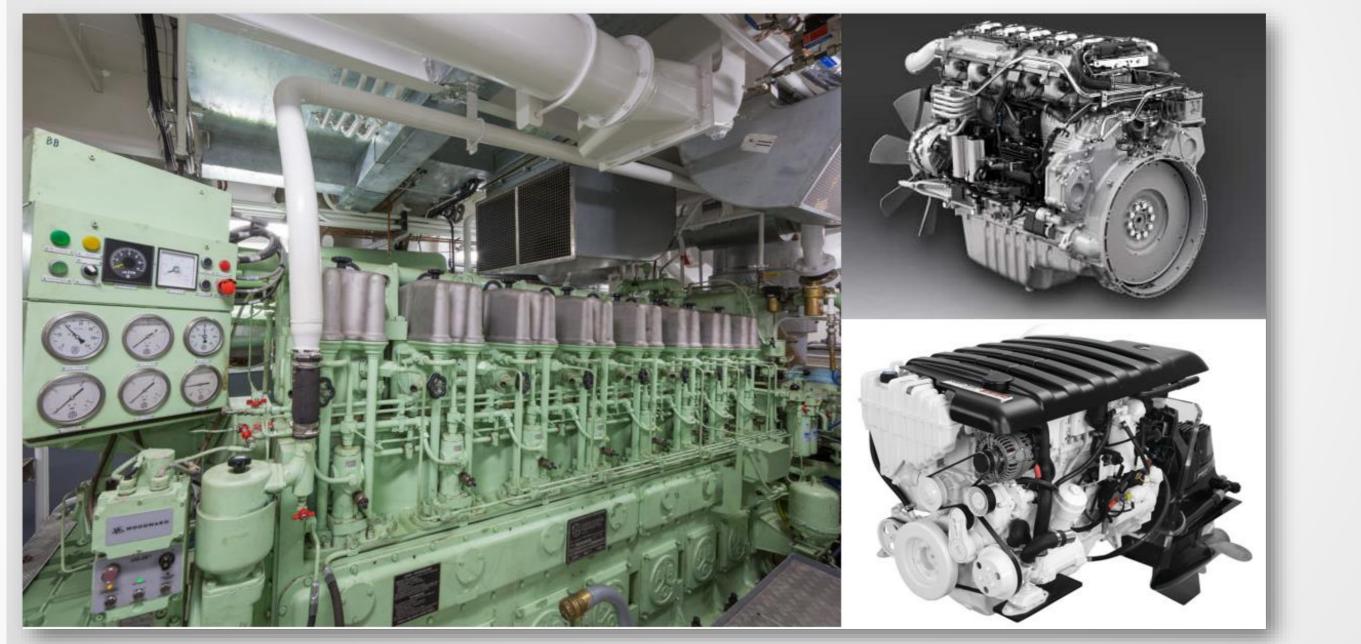
The project has received funding from the European's Horizon 2020 research and innovation programme (Contract No.:860251)

Project core idea

<u>ASTAMATER</u>

Challenges to be tackled by the project

- Four-stroke methanol engines, and retrofits of marine engines to methanol operation, not commercially available
 - i.e. power range 100 kW 10 MW
- O No demonstration of the full chain of renewable methanol production to ships sailing on it
 - Production distribution bunkering sailing
- Q Rules and regulations not mature yet
 - Need practice, on different vessel types, need to be challenged if required


ATTER

O 4y project, started June 1st, 14 partners, 6.4 M€ (5 M€ EU funding)

How are we going to address them?

- Medium speed dual-fuel engines (2 MW demo engines, 1 4 MW commercial offering)
- High speed MD95 engine (400 kW demo engine, 150 450 kW commercial offering) \bigcirc
- High speed dual-fuel engine retrofit (200 kW demo engine)
- Dual-fuel retrofit kit for 200 kW – 4 MW engines

How are we going to address them?

- Harbour tug, medium speed engines, O 2 x 2 MW, Antwerp, BE
- River cruise vessel design, DE \bigcirc

ASTEWATER

Pilot boat, high speed engine 400 kW, Oxelösund, SE Coast guard vessel, high speed engine 200 kW, Athens, GR

Partners

Covering the value chain

- O Universities and research institutes
- O Engine manufacturers and equipment suppliers
- Fuel supplier and distributor
- O Naval architects and consultancies
- Shipyards
- O Classification society
 - Fleet owners
- O Port authority / administrations

UNIVERSITY

and 20 8 500 000

Port of

Antwerp

Advisory board

Advice on exploitation, increase project exposure, identify early movers, push adoption of recommended guidelines

- Renewable methanol producers
- Ship owners
- Authorities

O Propulsion technology manufacturers / engineering consultancies / R&D

Project outcomes benefiting other initiatives

- High and medium speed methanol engines commercially available \bigcirc
- Engine retrofit kit commercially available \bigcirc
- Real life demonstrators that can be visited to get a hands-on feel for \bigcirc practical applications
 - Tested training material for crew and on-shore personnel
 - Simplified rules and regulations
- Renewable methanol supply chains
 - Business plans to support investment decisions

Follow us!

On LinkedIN: <u>https://www.linkedin.com/company/fastwater/</u>

On Twitter: FASTWATER

On our webpage: <u>fastwater.eu</u>

LUNIVERSITY