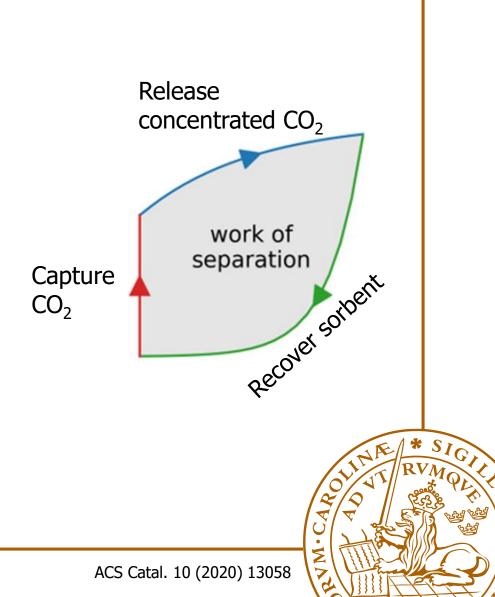
Carbon dioxide - the complex molecule, problem and solution in one

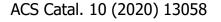
LUND UNIVERSITY AND THE FASTWATER CONSORTIUM

2020-11-05

Christian Hulteberg


Introduction

- Drive to use carbon dioxide as a feedstock
 - Source of carbon atoms
 - Important for materials when transition to electricity-based society
 - Need for materials and chemicals will change but not disappear
 - No lack of carbon dioxide with global emissions 24 billion tpa...


Introduction

- Where is the CO₂ going to come from?
 - Point sources
 - Chemical plants
 - Combustion
 - Direct air capture (DAC)
- Costs energy to concentrate...
 - Point source 5-8 kJ/mol
 - DAC ≈22 kJ/mol

Introduction

- Costs energy to concentrate...
 - Point source 5-8 kJ/mol
 - DAC ≈22 kJ/mol
- The energy input can be thermal
 - Overwhelmingly the most common approach
 - Medium temperatures common, but some use low
 - Can be combined with pressure swings
- Electricity is an exiting emerging field...

Method of separation	DAC	Comments
Aqueous amine	N/A	 Industrial workhorse, largest scale currently implemented, stripper equilibrium and oxidative instability makes it less suitable for DAC
Solid amines	Yes	 No solvent, lower regeneration energy input, sensitive to water and impurities, supported amines/imines on silicates, carbon, MOFs, zeolites, polymers, aluminates Low technology maturity
Potassium carbonate	(Yes)	 Low throughput, well established working mechanism, good oxidative stability
Chilled ammonia	N/A	Low temperatureWater condensation is a problem

- Concentration costs
 - The higher the concentration...
 - The energy input requirement decreases per mol
 - The more mature the capture technology is
 - Lowest concentrations are for DAC (400 ppm)

- DAC differs
 - Much more diffusion limited
 - Requires much higher volumes to be processed
 - Pressure drop large part of OPEX
 - Results in very large process units

- For DAC the land and water use needs to be considered
 - Up to 4 moles of
 water may be
 needed per mole of
 CO₂
 - Still very efficient compared to forests

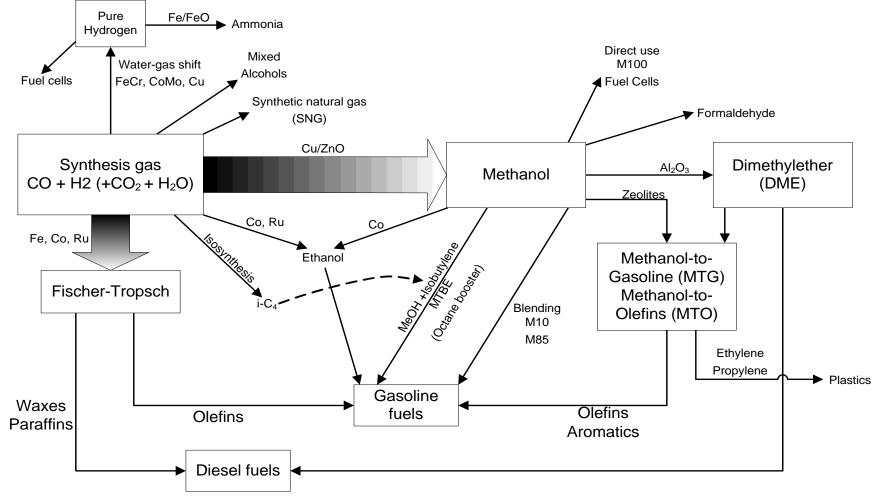
- Carbon dioxide is normally derived from
 - Fossil fuels from energy production
 - Fossil fuels from other sources, e.g. in the chemical industry
 - Fermentation processes
- Very little DAC is done at this time...

- Carbon dioxide can be used either
 - Through physical utilization
 - Molecule is used as is
 - May include change in aggregation state
 - Through chemical conversion
 - Molecule is cracked
 - Converted into some other product
- In both cases the use can be as a booster or direct

- Through direct physical utilization
 - Dry ice
 - Carbonation
 - Refrigerant
 - Welding medium
 - Solvent

- Through boosting physical utilization
 - Enhanced oil recovery
 - Enhanced natural gas recovery
 - Power production via supercritical cycle

- Through direct chemical utilization
 - Calcium carbonate
 - Cetylsalicylic acid
 - Urea
 - Salicylic acid
 - Polypropene carbonate
 - Formic acid



- Through indirect/boosting chemical utilization
 - Polyurethane
 - Dimethyl carbonate
 - Dimethyl ether
 - Methanol
 - Algae fuel

New applications

- Electrification of the chemical industry is a game changer...
- Opening up for direct electrochemical conversion of carbon dioxide into, e.g. formic acid, formaldehyde etc.
- Also indirect using electricity to produce hydrogen and to synthesize, e.g. methane, methanol, diesel etc. using carbon dioxide as a carbon source

Generation of synthesis gas for fuels and chemical products P. Tunå, reproduced with permission

Conclusions

- Concentration is everything...
- ... and it costs energy
- Current use is surprisingly large
- Any future use for making fuels and chemicals requires energy input
- DAC has potential but is still far from realization in large scale

LUND UNIVERSITY